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Abstract

Broad scale population estimates of declining species are desired for conservation

efforts. However, for many secretive species including large carnivores, such estimates

are often difficult. Based on published density estimates obtained through camera trap-

ping, presence/absence data, and globally available predictive variables derived from

satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar,

across the species’ entire range. We then combined these models in a hierarchical

framework to estimate the total population. Our models indicate that potential jaguar den-

sity is best predicted by measures of primary productivity, with the highest densities in

the most productive tropical habitats and a clear declining gradient with distance from the

equator. Jaguar distribution, in contrast, is determined by the combined effects of human

impacts and environmental factors: probability of jaguar occurrence increased with forest

cover, mean temperature, and annual precipitation and declined with increases in human

foot print index and human density. Probability of occurrence was also significantly

higher for protected areas than outside of them. We estimated the world’s jaguar popula-

tion at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Ama-

zon Basin; elsewhere, populations tend to be small and fragmented. The high number of

jaguars results from the large total area still occupied (almost 9 million km2) and low

human densities (< 1 person/km2) coinciding with high primary productivity in the core

area of jaguar range. Our results show the importance of protected areas for jaguar
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persistence. We conclude that combining modelling of density and distribution can reveal

ecological patterns and processes at global scales, can provide robust estimates for use

in species assessments, and can guide broad-scale conservation actions.

Introduction

Broad scale population estimates are desired for setting conservation goals and priorities

(e.g. for IUCN assessments) [1], [2]. However, for many secretive species that are diffi-

cult to census, such estimates are often based on “expert opinion” which is burdened

with a high and unquantifiable level of uncertainty [3], [4]. Large carnivores are difficult

to census due to their secretive nature but are considered to be declining globally due to

human impacts [5]. For the most conspicuous species, i.e. lions Panthera leo and cheetah

Acinonyx jubatus, attempts have been made to apply direct counts and use them for total

population estimation [6], [7]. However, for other carnivore species robust population

estimates at a global scale do not exist (e.g. for the jaguar Panthera onca and the leopard

P. pardus [8], [9]).

When direct censuses are not possible, population estimates may be derived from known

species distributions and spatial variation in population densities. However, as densities are

usually highly variable in space, a large number of density studies would be needed to reli-

ably estimate population size; similarly precise distributions of species are rarely known. An

alternative approach would be to model density variation and distribution and combine

spatial predictions of both models to derive population numbers at a given moment. Species

distribution models have become a powerful tool in animal conservation. They can help to

estimate current species range, identify factors determining species distribution, and indi-

cate ecological corridors [10], [11]. Various distribution models for large carnivores have

been proposed recently, most indicating that the probability of carnivore occurrence may

depend on environmental conditions but also increasingly on various human impacts [12]–

[14]. Unlike distribution, variation in large carnivore density has not been widely analysed

due to a scarcity of adequate data. Recently, population density estimates based on camera

trap data have become increasingly common for species that are individually identifiable

such as jaguars, leopards, and tigers P. tigris [15–17]. In many early camera-trapping stud-

ies, densities were estimated with non-spatial capture-recapture models, which have been

criticised recently as leading to overestimation [18], [19]. Spatial capture-recapture models

have been shown to produce more accurate density estimates [20] and are slowly replacing

non-spatial methods.

In our study we used the profusion of recently published density estimates to gain insight

into the factors affecting the density and distribution of the jaguar at a global scale. To increase

our sample size for the analysis of spatial variation in population densities, we proposed a

method to rescale the estimates obtained with non-spatial methods to the level of densities

obtained with spatial models. Using widely available data derived from satellite imagery, we

modelled variation in jaguar density across the species’ range. Based on a second, independent

presence-absence dataset, we also developed a distribution model and calculated the probabil-

ity of jaguar occurrence across the Americas. With this approach, we separately revealed mech-

anisms and factors that determine population densities and distribution of jaguars. Finally, we

combined these results in a hierarchical framework to estimate the current total population of

jaguar across the entire species’ range.

Global population estimate of a large carnivore
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Materials and methods

Study area

Our study area covered the entire historical range of the jaguar in South and North America

(17.6 million km2 [21]) enlarged by a 200 km buffer adjacent to the current jaguar range [8] if

outside of the historical range (Fig 1).

Modelling jaguar density

Jaguar densities were obtained using the published results of 117 camera-trap studies, con-

ducted in 80 different study sites between 2002 and 2014. Our sources included studies pub-

lished in peer reviewed journals, theses and dissertations, as well as government and non-

governmental agency reports (S1 Table). In these studies, jaguar densities were estimated with

non-spatial and/or spatially explicit capture-recapture methods. For non-spatial methods, pro-

grams CAPTURE [22] or MARK [23] were used. Spatially explicit capture-recapture (SCR)

models can be based on maximum likelihood or on a Bayesian framework; the former were

usually calculated with programs DENSITY [24–26] or SECR [25], [27] and the latter with pro-

grams SPACECAP [28] or SCRbayes [29], [30].

Spatial and non-spatial methods differ in how they calculate densities. To produce a density

estimate, non-spatial methods calculate the total number of jaguars and divide that by an esti-

mate of the sampled area, which consists of the study area plus a buffer. This buffer is usually

calculated as half the mean maximum distance moved by individuals within the study (hereaf-

ter referred as 1/2MMDM) [31]. In SCR methods, density is calculated based on the estimated

spatial distribution of animal activity centres, individual detection probabilities, and the spatial

distribution of their movements, inferring density directly from these spatial data without

requiring an arbitrary buffer [30]. These differences make SCR superior to 1/2MMDM meth-

ods [18], [19]. In general, 1/2MMDM methods overestimate densities while SCR methods

yield more accurate estimates that are comparable to estimates based on radiotracking [20].

Of the 117 studies analysed here, 59 used non-spatial methods, 53 used both spatial and

non-spatial methods simultaneously, and 5 studies presented only spatial methods. We treated

8 studies in which no jaguars were recorded by camera traps as zero density estimates (S1

Table). We assumed that estimates based on 1/2MMDM and SCR methods should be corre-

lated and, if so, both should reflect spatial patterns in the functional relationships between real

jaguar densities and environmental conditions at a large geographic scale. To test this assump-

tion, we performed a linear regression between estimates obtained with 1/2MMDM and SCR

methods, based on the 53 studies where both methods were used. When SCR estimates were

provided based on both frameworks (maximum likelihood and Bayesian), we used an average

of the two. We used the output of this regression to predict the SCR estimates for the remain-

ing 59 non-spatial density studies and to rescale them to an SCR level. Some of the original 117

reported densities were repetitions performed in the same study area over a different time

period (i.e. multiple years), in these cases we used the mean values for the same location to

avoid an overrepresentation of some habitats. In total we used density estimates from 80 loca-

tions (Fig 1).

We modelled jaguar density based on 17 candidate spatial variables (S2 Table) in a multiple

linear regression. Our candidate variables included 3 anthropogenic and 13 environmental

factors, all hypothesized to affect carnivore density. As anthropogenic variables, we used: (a)

human population density, which we assume is related to the density of hunters, number of

human-carnivore conflicts, and frequency of killing large carnivores and their prey [32–34];

(b) human footprint index, which reflects the degree of anthropogenic habitat changes [35],

Global population estimate of a large carnivore
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Fig 1. Study area map. Indicated are historical and current jaguar range (see Materials and Methods for definitions and sources for both) and the distribution of density

study sites and presence/absence records used for modelling range-wide jaguar density and occurrence.

https://doi.org/10.1371/journal.pone.0194719.g001
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and (c) classification of protected or non-protected areas. As environmental variables, we

used a set of vegetation indices derived from satellite images related to ecosystem productivity

and indicating potential abundance of jaguar prey biomass [36], [37]: (a) mean net primary

productivity (NPPMEAN), (b) mean gross primary productivity (GPPMEAN), (c) mean nor-

malized difference vegetation index (NDVIMEAN), and (d) mean enhanced vegetation index

(EVIMEAN). Each of these indices reflects a slightly different component of vegetation produc-

tivity with potentially different effects on herbivore populations [36–39]. In addition to mean

values, we also used the standard deviations of these variables reflecting environmental vari-

ability or seasonality strength, as this may also affect prey availability for jaguars. Additionally,

we included mean annual temperature and annual precipitation, which are related to ecosys-

tem productivity and have been shown to have an impact on jaguar distribution [40–42]. Be-

cause forests and water are considered important components of jaguar habitat [43], we

incorporated mean forest canopy cover and mean and standard deviation of the normalized

difference water index (NDWI) [44]. Finally, we included an indicator variable for North and

South America (coded as 1 for North and 2 for South America) to account for the smaller jag-

uar body mass, smaller areas of contiguous habitat, and higher human densities in Central

America [45–47]. A detailed description of the predictive anthropogenic and environmental

variables used is provided in S2 Table. To test the impact of study design on the precision of

density estimate, we also introduced variables characterizing camera-trapping effort of each

jaguar study, i.e., number of camera stations, number of study days, total number of trap-

nights, and the study area size (S1 Table).

All covariate raster data were standardized to a 1 km × 1 km pixel. We used this resolution

to account for the jaguars’ selection for certain habitats, (e.g., those related to water) [48–50].

Using a larger pixel size would dissolve these selectivity patterns, especially in dry areas where

jaguars are strictly connected to riparian forests and avoid surrounding dry areas. To each den-

sity estimate we assigned a pixel value that corresponded to geographic coordinates of the cen-

tral part of study area or to the highest concentration of camera traps. Because in some studies

detailed maps with exact locations of camera stations and their geographic coordinates were

not included we could not calculate averaged pixel values and we assumed that the central pix-

els were representative of the study area as a whole. We applied a log-transformation to

human population density, which had considerable skew [51]. Possible correlations between

pairs of variables were evaluated by calculating Pearson correlation coefficients (S3 Table). In

the case of correlations above 0.7, the variable less correlated with the dependent variable was

removed from the analysis to avoid multicollinearity in the models [52].

We fit all subset models to the density data with the explanatory variables and selected the

best model based on Bayesian Information Criterion (BIC) [53–55]. To check if the regression

coefficients of the best model were robust, we used bootstrap resampling with 10,000 replica-

tions and calculated bias values of the estimates. We tested standard regression assumptions of

the best models by examining residual plots (plots of the standardized residuals as a function

of standardized predicted values), histograms, and normal probability plots [56]. To estimate

the relative importance of each independent variable in the total explained variance of density

estimates, we calculated semi-partial correlations with the formula:

sr2

i ¼ 1 � R2½ � �
t2
i

dfres

where R2 is the coefficient of determination, ti is the value of t-statistic for variable i, and dfres

is the number of degrees of freedom for residuals [56].

We projected our top density model across the whole of North—South America.

Global population estimate of a large carnivore
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All spatial analyses were conducted using ArcGIS 10.1 (ESRI Redlands CA, USA). All statis-

tical analyses were performed with SYSTAT 13.0 (Systat Software, Inc., San Jose, CA, USA)

and SPSS ver. 20 (IBM SPSS Statistics).

Predicting jaguar distribution

We gathered jaguar presence/absence data from 4 sources. First, we used 1,266 jaguar records

collected by the Wildlife Conservation Society in 1999 and 2006, and published by Zeller [57]

as part of a range-delimiting process. However, we corrected these data, classifying them as

presence points (993) if they were located inside the most recent, updated in 2014 IUCN jaguar

range (Fig 1), [8] and as absence points (273), if they were outside. In the latter case we

assumed that jaguars had been extirpated from these areas between 2006 and 2014. The 2014

IUCN jaguar range was updated following the same methodology as used by Zeller [8], [57].

We additionally adjusted it for 15 recently published jaguar records from Mexico, the USA,

and Brazil (Fig 1, S1 Data); hereafter this updated and adjusted range is referred to as current

jaguar range. Second, we used data from field surveys, including camera trapping, track rec-

ords, and interviews with hunters and cattle ranchers conducted across Venezuela between

2009 and 2015 (1,238 presence and 540 absence points [14]). Third, we included as presence

points the locations of studies of jaguar densities based on camera trapping conducted in

South and North America between 2002 and 2014 (72 points with non-zero values, all inside

the current jaguar range, Fig 1, S1 Table). Finally, because of the large disparity between the

number of presence locations and absence locations, we randomly generated 1000 additional

absence points within a buffer of 200 km outside current jaguar range (Fig 1). We reduced

densely distributed points, leaving only one if the distance between neighbouring points was

less than 5 km to decrease the level of spatial autocorrelation [14], [48]. In total, we used 1,694

presence and 1,683 absence points (Fig 1, S1 Data).

We fit logistic regression models to the presence-absence data and used the same set of can-

didate predictive variables as for the density model (S2 Table). Again, if highly correlated

(r> 0.7), we removed the less predictive variable to avoid multicollinearity (S4 Table). From

the set of models fit with all possible combinations of predictive variables, we selected the best

model (hereafter: occurrence model) based on Bayesian Information Criterion (BIC). We cal-

culated Nagelkerke’s R-Square [58], the area under the receiver operating characteristic (ROC)

curve (AUC), and a classification table to evaluate how well the model fit our data. To check if

the regression coefficients were robust, we used bootstrap resampling with 10,000 replications

and calculated bias values of the estimates. To test the predictive performance of the model, we

conducted a 10-fold cross validation with a 75% / 25% data split for our training and evalua-

tion data and we calculated an AUC value for each run [59]. We projected our occurrence

model to the entire study area in ArcGIS. The logit values g(x) obtained from the best model

were converted to probabilities with the function

p xð Þ ¼
egðxÞ

ð1þ egðxÞÞ

where p(x) represents the probability of a 1 km2 pixel being occupied [60].

Estimating jaguar population numbers

We could not derive population numbers directly from our density model because researchers

conducting camera trapping studies tend to select less disturbed study areas, where they expect

to find jaguars and thus avoid areas with high human impacts. Therefore the predictions of

our density model likely represent potential rather than actual jaguar densities. However,

Global population estimate of a large carnivore
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human impacts were accounted for in our occurrence model, which was developed with both

presence as well as absence points (i.e. where jaguars have been extirpated). To generate a

range-wide estimate of the jaguar population, we combined density and occurrence models.

The rationale of our method is based on the assumption that variation in potential population

density and probabilities of occurrence at large geographic scales are driven by different mech-

anisms. We assumed that variation in potential density in carnivore populations results from

the strong dependence of home range sizes on productivity factors and this relationship is

strong even in highly human impacted conditions [61–63]. Probability of occurrence depends

on both environmental conditions and human impacts [14] and it reflects the occupancy of

potential territories. By multiplying the two models together, a cell with high human impact,

and therefore low probability of occurrence, would contribute little to the total population esti-

mate, even in an area with high potential density value. Thus, the product of such multiplica-

tion should represent jaguar population density adjusted by human impacts. With these

assumptions, we calculated the adjusted jaguar densities by multiplying both models and pro-

jected the results over the current jaguar range.

To estimate the total jaguar population size we combined our density and occurrence mod-

els in a hierarchical modelling framework using programs R and JAGS, version 4.2.0 (R2Jags)

[64]. To make our population model computationally feasible, we resampled our covariate lay-

ers (see above) to 10 km x 10 km pixels (see S1 Text for the discussion on how this transforma-

tion could influence population size estimates).

Our estimate is hierarchical in that an estimate of density is conditional on the cell first

being occupied. We defined the occurrence of jaguars in any given cell (i) as a Bernoulli ran-

dom variable:

zi � BernðpiÞ;

where pi is the probability of jaguar occurrence derived from logit g(x) values of our top occur-

rence model, based on the covariates X1-k: and the corresponding regression coefficients b1-k

logit gðxÞ ¼ b0 þ b1X1 þ b2X2 þ . . .þ bkXk

p xð Þ ¼
egðxÞ

ð1þ egðxÞÞ

Density (d) for each cell (i) was based on the covariates Y1-k of our top density model:

�d ¼ b0 þ b1Y1 þ b2Y2 þ . . .þ bkYk

with assumed normal distribution of d around �d estimate, with variance σ2:

d ¼ Nð�d; s2Þ

Therefore the probable density (d̂) for each cell (i) in model iteration (j) is calculated as:

bdij ¼ dij � zij:

Combining our density and occurrence models in this way allowed us to use a distribution of

possible beta coefficients for all covariates in both our occurrence and density models, thus

incorporating uncertainty for each cell in each iteration of the model. We estimated a posterior

distribution of parameters for both models using a Markov Chain Monte Carlo (MCMC) in

JAGS (version 4.2.0) through program R (R2Jags) [64]. We iterated the model on a single

chain 100,000 times after a burn-in of 1000 and thinned by 100 retaining 990 iterations for

Global population estimate of a large carnivore
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each cell. We used normally distributed priors for all covariates with a mean of 0 and precision

of 0.001. We standardized all covariate values to have a mean of 0 and a standard deviation of

1.We summed the density estimate for each cell in each iteration to produce a total population

estimate (see S2 Text for R code). We calculated posterior standard deviations of our estimate

for each cell for each model based on the 990 retained model iteration outputs [65]. We made

predictions for current jaguar range, for protected areas within current range, and for the

entire historical jaguar range (Fig 1), [8], [21]; in the latter case we assumed that some poten-

tially suitable, although currently not inhabited areas may still exist outside of the current

range and potentially they could be recolonized by jaguars in the future.

To validate our method of estimating the global population, we simulated a dataset using

similar sampling effort and modelling techniques as in the empirical dataset [65]. We created a

data set of 175,000 rows, representing the approximate number of 100 km2 cells that makeup

historical jaguar range. We then assigned to each row a randomly generated jaguar density

and values of six randomly generated continuous and one binomial covariates corresponding

to covariates from our density and occurrence models. Finally, to match our sampling level we

randomly sampled 0.05% of the cells for density, and 2% of the cells for occurrence. We then

used the same MCMC process as above to estimate the simulated population level. We repli-

cated this simulation procedure 100 times. In each replicate, new “population” and covariate

values were generated, sampled, and modelled. From the output, we could estimate bias and

accuracy of our method [66] (see S2 Text for details).

Results

Spatial variation in jaguar density

Jaguar densities estimated by non-spatial methods (½MMDM) ranged from 0–18.3 per 100

km2 and were generally greater than SCR estimates (0–9.0 per 100 km2). A regression of SCR

and ½MMDM (SCR = 0.07391 + 0.54761 � 1/2MMDM) (Fig 2) was highly significant and pre-

dictive (p< 0.001, R2 = 0.76, SE = 1.06, N = 53). We used this model to predict SCR density

estimates for studies reporting only non-spatial methods, essentially increasing our sample

size and standardizing density estimates.

Based on the original (58 studies, 36 study sites) and reconstructed (59 studies, 44 study

sites) SCR density estimates we developed a set of regression models explaining spatial varia-

tion in jaguar population density. Our top model included four variables: mean annual tem-

perature, mean annual net primary productivity (NPPMEAN), standard deviation of annual net

primary productivity (NPPSD), and a categorical variable distinguishing North and South

America (Table 1). This model was highly significant (p< 0.001), explained a relatively high

level of variability in density estimates (R2 = 0.45, SEE = 1.37, N = 80), and had robust regres-

sion coefficients (Table 2). It indicated that productivity factors and mean annual temperature

have positive effects on jaguar densities and that at the same environmental conditions jaguar

densities are slightly higher in North than in South America. Temperature and NPPMEAN had

the greatest ability to explain variability in jaguar density, changing the R2 value by 24% and

14% respectively, as indicated by semi-partial correlations sri
2 (Table 2). Human impact vari-

ables were absent from any of the top models (Table 1). In further analyses, we treated predic-

tions of the top model as potential jaguar densities.

The spatial prediction of our top model across the Neotropics indicated that jaguars can

reach the highest population densities in the most productive, humid areas and the lowest den-

sities in dry areas or in higher altitudes (Fig 3). High potential densities were predicted for

most of the Amazon Basin (2–3 jaguars/100 km2), and especially for the areas at the base of the

Andes in Peru (�3 jaguars/100 km2). High densities were also predicted for the Yucatan
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Peninsula and eastern coast of Central America (�3 jaguars/100 km2). Our model predicts a

clear gradient of declining jaguar potential density with distance from the equator, resulting in

low densities at the northernmost and southernmost extremes of historical range. Low or zero

densities in high altitude, mountainous regions including the Andes, were predicted (Fig 3).

The posterior standard deviation of the potential jaguar densities estimated by our model were

low, for most areas lower than 0.6 jaguars/100 km2 (S1 Fig).

Jaguar occurrence

In contrast to the density model, our best supported jaguar occurrence model contained both

anthropogenic and environmental variables (Table 3). In our top model, forest cover, tempera-

ture, precipitation, and legal protection had positive effects on the probability of jaguar

Fig 2. Regression between jaguar density estimates obtained with non-spatial and spatial capture-recapture models. Data points represent 53

published studies in which both non-spatial and spatial density estimates were applied (S1 Table).

https://doi.org/10.1371/journal.pone.0194719.g002
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occurrence, while human population density and human footprint index had negative effects

(Table 4). With all other variables held constant, the probability of jaguar occurrence was

slightly higher in North America than in South America. This model had reasonable predictive

performance (p< 0.001, Nagelkerke’s R2 = 0.624, AUC = 0.912; sensitivity = 0.83, specific-

ity = 0.85, N = 3,377). All coefficients had measurable effect sizes and biases were small

(Table 4). In cross validation, the mean AUC value for the estimated probabilities of the

smaller subsamples was 0.908 (range 0.889 to 0.922).

Spatial projection of the top occurrence model predicted the highest probabilities of jaguar

occurrence in the Amazon basin from the eastern foothills of the Andes to the Atlantic coast

and along the eastern coast of Central America (Fig 4). In contrast, the model predicted low

probabilities of occurrence in dry areas, in mountain regions at high altitudes, in areas of

dense human population (i.e. south-eastern Brazil), and at the northern and southern extremes

of historical jaguar range. Our model also suggested a high degree of fragmentation of jaguar

range outside the core area of the Amazon Basin (Fig 4). The total area with a probability of

jaguar occurrence higher than 0.5 was 9.4 million km2, and that with a probability of> 0.9 was

6.2 million km2. The posterior standard deviations of the predicted probabilities were generally

low. The spatial distribution of these standard deviations indicated that our predictions of jag-

uar occurrence were least variable for the Amazon basin and somewhat less certain for some

parts of Central America (S2 Fig).

Table 1. Comparison of multiple linear regression models of jaguar density from 80 sites in North and South America based on values of Bayesian Information Cri-

terion (BIC). Presented are ten best-fitting multiple linear regression models based on 21 spatial variables (three anthropogenic variables, 13 environmental variables, an

indicator variable for North and South America (NA-SA), and four variables measuring camera trap effort); definitions of the predictive variables are in S1 and S2 Tables.

Density studies were conducted between 2002 and 2014. Bold indicates the model used for spatial prediction of jaguar density.

Model

No

Predictive variables BIC ΔBIC BIC weight R2 Significance of covariates

1 TEMP, NPPMEAN, NPPSD, NA-SA 298.65 0.00 0.26 0.45 All significant

2 TEMP, NPPMEAN, NPPSD, NA-SA, N_CamStations 299.78 1.13 0.14 0.48 N_CamStations not significant

3 TEMP, EVIMEAN 300.22 1.57 0.12 0.38 All significant

4 TEMP, EVIMEAN, N_CamStations 300.61 1.96 0.10 0.41 N_CamStations not significant

5 TEMP, NPPMEAN, NPPSD, EVIMEAN, NA-SA 300.64 1.99 0.09 0.47 EVIMEAN not significant

6 TEMP, EVIMEAN, NA-SA 301.22 2.57 0.07 0.40 All significant

7 TEMP, NPPMEAN, EVIMEAN, NA-SA 301.37 2.72 0.07 0.43 All significant

8 TEMP, NPPMEAN, NPPSD, EVIMEAN, NDVISD, NA-SA 301.51 2.86 0.06 0.49 NDVISD not significant

9 TEMP, NPPMEAN, NPPSD, EVIMEAN, NA-SA, N_CamStations 301.63 2.98 0.06 0.49 N_CamStations and EVIMEAN not

significant

10 TEMP, NPPMEAN, NPPSD, EVIMEAN, NDVISD, NA-SA,

N_CamStations

302.94 4.29 0.03 0.51 N_CamStations and NDVISD not significant

https://doi.org/10.1371/journal.pone.0194719.t001

Table 2. Parameters of the best-fitting multiple linear regression model of jaguar density from 80 sites in North and South America. Density studies were conducted

between 2002 and 2014. Bias and the standard error of the regression coefficients of the bootstrapped model (10,000 replications) are shown; definitions of the predictive

variables are in S2 Table.

Effect Coefficient Standard Error t sri
2 p-Value bias Standard ErrorBOO

CONSTANT -8.07747 1.92 -4.20 < 0.001 -0.11 1.74

TEMP 0.38911 0.07 5.76 0.24 < 0.001 <0.01 0.05

NPPMEAN 0.00136 <0.01 4.40 0.14 < 0.001 <0.01 <0.01

NPPSD 0.01026 <0.01 2.68 0.05 0.009 <0.01 <0.01

NA-SA -1.07356 0.33 -3.27 0.08 0.002 <0.01 0.34

https://doi.org/10.1371/journal.pone.0194719.t002
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Fig 3. Predicted spatial variation of jaguar potential densities across North and South America. Densities were predicted with our top regression model based on

four environmental variables (mean annual temperature, NPPMEAN, NPPSD, North America–South America code). See also Table 2 for model covariates and associated

coefficients.

https://doi.org/10.1371/journal.pone.0194719.g003
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Jaguar population size

In our analysis of simulated data sets, all mean estimates resulting from the hierarchical model-

ling process were within +/-19.05% of the true value (range 0.01 to 19.05%), with a mean abso-

lute error (MAE) of 6.60%. This indicates that on average the mean population estimate

predicted by our model would be within 6.60% of the true simulated population (S2 Text). Our

simulations suggest that the hierarchical modelling and the sampling level that were available

for us are sufficient to estimate the actual population size with a reasonable degree of error.

Applying our hierarchical model to our jaguar dataset resulted in a mean posterior estimate

of 173,151 jaguars (95% CI: 138,148–208,137) within the current range of the species (8.968 mil-

lion km2), (Fig 5, Table 5). Similarly, we calculated the population size for each country in jag-

uar range (Table 5). Brazil may possess half of the world’s jaguar population (approx. 86,800),

followed by Peru with as many as 22,200. In North America, Mexico is expected to contain the

largest population with a mean estimate of approximately 4,300 jaguars. We predicted a popula-

tion approaching 0 (95% CI 0–4) for the Sonoran region of the United States where single ani-

mals were recently observed [67]. The adjusted jaguar population densities, resulting from

combining density and occurrence models and restricted to current jaguar range, differed from

the potential densities in areas with stronger human impacts (Fig 6). The posterior standard

deviations of these predictions were generally low, for the vast majority of jaguar range being

lower than 0.6 jaguars/100 km2 (S3 Fig), indicating good precision of our estimates.

For comparison, we also estimated the current potential population size across the entire

historical range of jaguar (approx. 17,758,200 km2), assuming that in the future jaguars may

recolonize some potentially suitable areas outside of their current range (compare Figs 1, 4

and 6). Our model estimated 204,650 jaguars (95% CI: 163,742–246,691), suggesting a poten-

tial increase of 18% if expansion occurs outside of current range (S5 Table). Finally, we esti-

mated a population of 77,364 jaguars (95% CI: 62,090–92,951) inside protected areas within

Table 3. Comparison of the four best-fitting logistic regression models of jaguar presence-absence at 3,155 sites in North and South America, between 2006–2015.

Models were fitted with 17 spatial variables (three anthropogenic variables, 13 environmental variables, and North America–South America code); definitions of the pre-

dictive variables are in S2 Table. Selection of the best model based on the Bayesian Information Criterion (BIC); additionally Nagelkerke R2 and the area under the receiver

operating characteristic curve (AUC ROC) are provided. Bold indicates the best model used for spatial prediction of jaguar occurrence.

Model No Predictive variables Nagel-kerke R2 AUC ROC BIC ΔBIC BIC

weight

1 TEMP, PREC, CANOPY, HPDENLG, HFOOTP, PRAR, NA-SA 0.624 0.912 2,616.45 0 0.9997

2 TEMP, CANOPY, HPDENLG, HFOOTP, PREC, PRAR 0.619 0.910 2,632.92 16.47 0.0003

3 TEMP, CANOPY, HPDENLG, HFOOTP, NA-SA, PRAR 0.617 0.910 2,639.92 23.47 0.0000

4 TEMP, CANOPY, HPDENLG, NA-SA, PREC, PRAR 0.615 0.908 2,649.89 33.44 0.0000

https://doi.org/10.1371/journal.pone.0194719.t003

Table 4. Parameters of the best-fitting logistic regression model of jaguar occurrence in North and South America. Definitions of the predictive variables are in S2

Table. Included are biases and p-values for regression coefficients of the bootstrapped model.

Parameter Estimate Standard Error Z p-Value Odds ratio Bias pBOO
CONSTANT -6.26094 0.47 -13.25 < 0.001 -0.033 < 0.001

TEMP 0.27835 0.02 15.84 < 0.001 1.03 0.001 < 0.001

PREC 0.00046 <0.01 5.45 < 0.001 1.00 <0.001 < 0.001

CANOPYMEAN 0.05481 <0.01 18.49 < 0.001 1.06 <0.001 < 0.001

HPDENLG -0.56917 0.05 -11.20 < 0.001 0.57 0.003 < 0.001

HFOOTP -0.03480 0.01 -6.32 < 0.001 0.97 <0.001 < 0.001

PRAR 1.19062 0.13 9.06 < 0.001 3.29 0.005 < 0.001

NA-SA -0.68730 0.14 -4.96 < 0.001 0.50 0.002 < 0.001

https://doi.org/10.1371/journal.pone.0194719.t004
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Fig 4. Predicted probability of jaguar occurrence in North and South America. Probability values were predicted by our top occurrence model that included seven

spatial variables (mean annual temperature, annual precipitation, forest cover, human density, human footprint index, area protection status, and North America—

South America code). See also Table 4 for model covariates and associated coefficients.

https://doi.org/10.1371/journal.pone.0194719.g004
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current range (approx. 3,493,000 km2), where presumably jaguars have the highest protection

and therefore the greatest chance of persistence (S6 Table).

Discussion

We have proposed a new method to estimate the range wide population of jaguars, using avail-

able density and presence/absence data. The models that we have presented may be used to

predict jaguar population densities, probability of occurrence, and population size at a given

moment across the Neotropics (i.e. geographic regions, specific protected areas, etc.). Thus,

they could be applied to conservation planning of new protected areas or in determining the

degree of connectivity between populations. Our results provide a reference for monitoring

future trends in jaguar populations.

Jaguar population numbers

Our estimate of the total jaguar population, approximately 173,000 individuals (CI = 138,000–

208,000), was greater than may be expected by many researchers. This estimate may be

Fig 5. Posterior distribution of range-wide jaguar population estimates. Results obtained from 100,000 iterations of a hierarchical model of jaguar occurrence and

density; dashed vertical lines represent a 95% credible interval.

https://doi.org/10.1371/journal.pone.0194719.g005
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influenced by the large area (approximately 9 million km2) that is still inhabited by jaguars. A

large proportion of our estimate was attributed to the forested areas of the Amazon basin,

which were characterized by relatively high probabilities of jaguar occurrence and moderate to

high densities. In most of this forested area, human population densities are low (< 1 person/

km2). In such conditions hunting usually has no measurable effect on populations of jaguars

and their prey base [33], [34], [68] and jaguars have a high ability to persist, unless deforesta-

tion and cattle operations are introduced [14], [69]. Our estimates suggest that jaguars are still

likely abundant in some areas, and thus may play an integral role in trophic cascades and prey

regulation in neo-tropical ecosystems [70–72]. However, rates of jaguar extirpations continue

to increase, mainly due to habitat alteration. During the last 100 years, the range of this species

in South America has been reduced to approximately half of its historical distribution [21].

Despite its legal protection in all countries, jaguar populations continue to decline [14]. Our

analysis indicated that outside the Amazon basin, jaguar populations are small and highly frag-

mented and other studies have shown that some of the former strongholds of jaguar, like those

in the Atlantic Forest, appear on the verge of extirpation [13]. Therefore, despite our fairly

high estimate of the total population, the future of the jaguar is uncertain [8], [73].

Table 5. Model estimates of occupied area, population size, and mean density of jaguars in the countries of South and North America. Population estimates and

95% credible intervals for each country were derived from hierarchical combination of the best fitting jaguar occurrence and density models based on anthropogenic and

environmental variables. Calculations were performed for the area of current jaguar range (Figs 1 and 6).

NR Country Current jaguar range area (thousands

km2)

Mean estimate of jaguar population size (95% Credible

Interval)

Mean density N/100

km2

(95% CI)

1 Brazil 4,583.6 86,834 (66,865–106,105) 1.89 (1.46–2.31)

2 Peru 739.6 22,210 (17,843–26,788) 3.00 (2.41–3.62)

3 Colombia 872.8 16,598 (11,724–21,311) 1.90 (1.34–2.44)

4 Bolivia 743.1 12,845 (10,260–15,449) 1.73 (1.38–2.08)

5 Venezuela 589.5 11,592 (8,761–14,334) 1.97 (1.49–2.43)

6 Guyana 208.8 4,356 (3,233–5,462) 2.09 (1.55–2.62)

7 Suriname 142.7 3,190 (2,275–4,081) 2.24 (1.59–2.86)

8 Ecuador 93.7 1,969 (1,586–2,359) 2.10 (1.69–2.52)

9 French Guiana 82.2 1,602 (1,097–2,105) 1.95 (1.33–2.56)

10 Paraguay 233.3 1,589 (708–2,497) 0.68 (0.30–1.07)

11 Argentina 76.1 314 (107–550) 0.41 (0.14–0.72)

13 Uruguay 0 0 (0–0) 0.00 (0.00–0.00)

12 Chile 0 0 (0–0) 0.00 (0.00–0.00)

Total South America 8,365.4 163,098 (127,893–197,494)) 1.95 (1.53–2.36)

14 Mexico 339.1 4,343 (3,400–5,383) 1.28 (1.00–1.59)

15 Nicaragua 60.5 1,476 (1,184–1,795) 2.44 (1.96–2.97)

16 Honduras 49.1 1,218 (986–1,447) 2.48 (2.01–2.95)

17 Guatemala 43.1 1,013 (828–1,201) 2.35 (1.92–2.79)

18 Panama 43 869 (692–1,057) 2.02 (1.61–2.46)

19 Costa Rica 38.5 571 (440–716) 1.48 (1.14–1.86)

20 Belize 20.9 563 (463–665) 2.69 (2.22–3.18)

21 United States 7.9 0 (0–4) 0.01 (0.00–0.05)

22 El Salvador 0 0 (0–0) 0.00 (0.00–0.00)

Total North America 602.1 10,054 (8,352–12,352) 1.67 (1.39–2.05)

Total South and North

Americas

8,967.5 173,151 (138,148–208,137) 1.93 (1.54–2.32)

https://doi.org/10.1371/journal.pone.0194719.t005
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Fig 6. Spatial variation in the mean estimates of adjusted jaguar population densities used for estimating population size within current jaguar range. Adjusted

jaguar population densities were estimated using a hierarchical model combining our density and occurrence models and thus accounting for human impacts.

https://doi.org/10.1371/journal.pone.0194719.g006
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Although validating our total population estimate is difficult, the results of our simulations

indicated that reasonable estimates at this scale and with this level of sampling are possible (see

S2 Text). Our results are also supported by independent studies conducted at smaller scales.

Sollmann et al. [74] estimated 52,000 jaguars in the protected areas of Brazil–compared to

46,391 by our study (95% CI: 35,702–56,361; see S6 Table). Based on camera trapping at 16

sites across Mexico, Chávez et al. [75] estimated a total population between 4,000 and 5,000 for

the country. Our model predicted 4,343 (95% CI: 3,400–5,383) jaguars for Mexico. Further,

Paviolo et al. [13] estimated a jaguar population in the Atlantic Forest (Brazil, Paraguay,

Argentina) at 150–300 individuals; our model predicts 336 (95% CI: 136–575) for the same

region (approximately 62,400 km2). Thus, our results are similar to the prior estimates pro-

vided by local studies and our credible intervals contain all those estimates. Alternatively, De la

Torre et al. [76] recently estimated the total jaguar population at 64,000 individuals. The

marked difference between their estimate and ours may have resulted from the following

issues: (a) De la Torre et al. restricted their estimate to 34 subpopulations whereas we modelled

the probability of occurrence across all of current range; their subpopulations do not reflect all

of the current range (compare Fig 1); (b) De la Torre et al. used 19 density estimates whereas

our model was trained using 80 published estimates (see S1 Table); (c) De la Torre et al. used a

subjective and simplified selection of density levels applied to different regions and habitats.

For instance, one density level was applied to all patches of jaguar range in southern Brazil and

Argentina, where varying levels of density have been documented [13]; (d) finally De la Torre

et al. applied what we consider a low density (1 jaguar/100 km2) to the whole of the “Amazo-

nia” region, which was not based on any field study; this single density was applied to areas

from northern Argentina and the Pantanal in the south, through the Amazon Basin to north-

ern Venezuela, where 37 actual studies have been conducted, and where estimated densities

range from 0 to 9 jaguars/100 km2 (based on spatial methods only, compare S1 Table). In

short, De la Torre’s use of a restricted range and low density estimates unsurprisingly results in

a lower total estimate than ours.

Possible biases and limitations of our analyses

Our best density model based on environmental variables explained approximately 45% of the

variation in jaguar density estimates throughout their range. The remaining unexplained vari-

ation is related to process and sampling variance. In our analysis, density estimates were only

slightly influenced by camera trapping study design, such as the size of the study area and the

number of camera stations used (Table 1). However, a common factor that increases variation

in density estimates is the duration of the monitoring period. Most studies were conducted

over a period of< 3 months (to fulfil the assumption of a closed population [19], [31], [77].

Jaguar density estimates from consecutive short periods at the same study area can vary by up

to 50% due to seasonal changes in jaguar activity patterns and territory use, which in turn can

influence detection probability and abundance estimates [78].

Our density estimates were derived from 80 camera trapping study sites. Although they

covered a wide range of habitats and environmental conditions, these estimates may not have

captured all of the natural variation in jaguar densities. Further precision in the predictions of

models such as ours will be obtained with more replicated and representative density

estimates.

Our occurrence model was based on 3,377 presence/absence points, producing robust pre-

dictions of jaguar occurrence probability. However, possible bias could result from an uneven

distribution of our data, with a higher concentration in some areas of Central America and

Venezuela, which potentially could produce spatial autocorrelation and inflation in the
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estimates of significance of the logistic regression [79]. We partially reduced this possible effect

by collapsing all points within 5 km of each other to a single point [14], [48]. The resulting

occurrence model validated well, indicating that any bias caused by an uneven distribution of

data was rather small. A more likely source of possible bias (overestimation of jaguar range) in

our results may come from the fact that some spatial data used as predictive variables may be

out-dated (e.g. data on human footprint index from 2004 and data on human densities from

2011, see S2 Table). Updated layers, as well as the addition of other anthropogenic variables to

our models, such as road density [80], could possibly increase the precision of the occurrence

model predictions. Nevertheless, these problems concern areas with higher human impacts.

Because areas with low human impact covered the largest part of jaguar range and had the

greatest probability of jaguar occurrence (i.e. the Amazon basin), these errors should not affect

our calculations to a great degree.

Our presence/absence data lacked temporally replicated samples at each site, thus we were

unable to account for detection probability in our model [81]. However, in the case of the jag-

uar, non-detection is practically equivalent to true absence, because the jaguar’s large size and

its conspicuous behaviour allows its easy detection by hunters, rangers, or cattle producers

[14], [82]. Thus, possible bias (underestimation of jaguar range) resulting from this weakness

of our data is rather small.

Our models are designed to estimate global distribution and population size at a snapshot

in time related to that at which the data was collected. They cannot predict future population

changes or population dynamics. New presence/absence data would have to be collected to

estimate population increases or declines over time.

Mechanisms determining variation in population density and distribution

Our analysis reveals the spatial mechanisms that determine jaguar population density and dis-

tribution across the species’ range. We demonstrate that jaguar potential (natural) densities

are driven by factors related to primary productivity. This finding is in concordance with pre-

vious work showing that mean carnivore home range size, which can be viewed as the inverse

to density, at large geographic scales is also determined by primary productivity [61–63]. It has

been also shown that carnivore densities are driven by productivity and biomass of herbivore

prey [83], [84] and that densities of herbivores are determined by primary productivity [85],

[86]. Thus, our results indicate a relationship between three trophic levels, providing support

for bottom-up regulation of ecosystems, although top-down forces also can act in parallel [87–

89]. It has also been shown that primary productivity influences the impacts of carnivores on

herbivore populations. In less productive ecosystems carnivores exert a stronger effect over

prey populations than in more productive ones [36], [90], [91]. Thus, primary productivity

seems to play a crucial role in determining the natural abundance of both herbivores and car-

nivores as well as the trophic interactions between them. The strong dependence of jaguar

potential densities on mean temperature and primary productivity produces a gradient of

declining densities with increasing distance from the equator. All these relationships are in

agreement with general patterns of biodiversity [92], [93]. Despite the relationship of potential

jaguar densities to primary productivity, actual jaguar numbers are often set by human

impacts [78], [94]. Our occurrence model accounts for these impacts as the probability of jag-

uar occurrence declined with increasing human population density. High human densities are

associated with increased hunting intensity, human–jaguar conflicts, and negative impacts on

prey populations [32–34], [68], [69], [95], [96]. The importance of forest cover and the human

footprint index to jaguar occurrence likely reflects the adverse effect of deforestation and other

habitat changes on jaguar populations [97]. Conversely, higher temperatures and precipitation,
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both closely related to primary productivity [40], increase the probability of jaguar occurrence

in our distribution model. Greater ecosystem productivity likely increases the capacity of car-

nivore populations to compensate for human caused mortalities (through enhanced popula-

tion productivity and density) and thus increases their probability of persistence. Our

distribution model predicts that a similar human population density will exert a stronger effect

on jaguar populations in dry than in wet habitats. Thus, populations in dry, low productivity

areas are more vulnerable to human impacts, as was demonstrated in Venezuela [14].

Conservation indications and conclusions

Our results show that protected areas have an important positive impact on jaguar persistence.

Given the strong, negative association between human activities and the probability of jaguar

occurrence, creating more protected areas, like national parks, is among the most important

conservation actions for this species and other large carnivores [98], [99].

We conclude that combining modelling of density and distribution can reveal ecological

patterns and processes at global scales, can provide robust estimates for use in species assess-

ments (e.g., IUCN), and can guide broad-scale conservation actions, including planning of

protected areas and their ecological corridors [100].
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Nacional Autónoma de México; 2016. p. 47–92.
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